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Abstract. Fire severity patterns are driven by interactions between fire, vegetation, and terrain, and they 
generate legacy effects that influence future fire severity. A century of fire exclusion and fuel buildup has 
eroded legacy effects, and contemporary fire severity patterns may diverge from historical patterns. In 
recent decades, area burned and area burned at high severity have increased and landscapes are transition-
ing back to an active fire regime where disturbance legacies will again play a strong role in determining fire 
severity. Understanding the drivers of fire severity is crucial for anticipating future fire severity patterns as 
active fire regimes are reestablished. We identified drivers of fire severity in the Klamath Mountains, a 
landscape with an active fire regime, using two machine learning statistical models: one model for non-
reburns (n = 92) and one model for reburns (n = 61). Both models predicted low better than moderate or 
high-severity fire. Fire severity drivers contrasted sharply between non-reburns and reburns. Fire weather 
and fuels were dominant controls in non-reburns, while previous burn severity, fuel characteristics, and 
time since last fire were drivers for reburns. In reburns, areas initially burned at low (high) severity burned 
the same way again. This tendency was sufficiently strong that reburn fire severity could be predicted 
equally well with only severity of the previous fire in the model. Thus, reburn fire severity is more pre-
dictable than severity in non-reburns that are driven by the stochastic influences of fire weather. Reburn 
severity in aggregate was also higher than non-reburn severity suggesting a positive feedback effect that 
could contribute to an upward drift in fire severity as area burned increases. Terrain had low importance 
in both models. This indicates strong terrain controls in the past may not carry into the future. Low- and 
moderate-severity fire effects were prevalent in non-reburns under moderate fire weather and self-
reinforcing behavior maintained these effects in reburns even under more extreme weather, particularly in 
reburns within 10 yr. Our findings suggest deliberate use of wildfire and prescribed fire under moderate 
conditions would increase fire resilience in landscapes transitioning to an active fire regime. 
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INTRODUCTION 2019, Taylor et al. 2020). Prior to human-imposed 
fire suppression in the early 1900s CE, fire–vegeta-
tion interactions were strongly regulated by 
legacy effects generated by the fire regime. 
Fire exclusion has significantly altered historic 

Fire is a natural disturbance process with last-
ing effects on vegetation patterns and landscape 
dynamics (Johnstone et al. 2016, Hessburg et al. 
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fire–vegetation interactions in western U.S. for-
ests, increasing the risk of uncharacteristically sev-
ere fire (Perry et al. 2011, Hessburg et al. 2019). 
However, as area burned continues to increase 
across western U.S. forests (Westerling 2016), 
landscapes are transitioning back to active fire 
regimes increasingly characterized by reburns 
(Buma et al. 2020) in which disturbance legacies 
again play a strong role. At the same time, con-
cern is mounting over the potential for fire-
initiated forest loss in the western North America 
as climate change alters fire–vegetation interac-
tions (Coop et al. 2020). Therefore, it is crucial to 
understand the drivers of forest fire severity and 
how these drivers shift as active fire regimes are 
reestablished. 

In frequent-fire forests, fire exclusion has 
increased forest cover, biomass, and density, and 
species composition has shifted toward fire-
intolerant tree species (Knapp et al. 2013, Taylor 
et al. 2014). Similar forest changes are evident in 
forests that historically burned at longer intervals 
(50–100 yr), but the magnitude of change is 
lower since fewer fires have been skipped (Taylor 
2000, Perry et al. 2011, Skinner and Taylor 2018, 
Hessburg et al. 2019). Vegetation changes, partic-
ularly in frequent-fire forests, have increased risk 
of severe canopy killing fire and along with a 
warming climate have driven increases in area 
burned and area burned at high severity in 
recent decades (Miller et al. 2012, Abatzoglou 
and Williams 2016). 

In mountainous terrain, topographic-fire feed-
backs historically perpetuated different vegeta-
tion types and fire regimes (Beaty and Taylor 
2001, Taylor and Skinner 2003, Lydersen and 
North 2012), and this strong influence of terrain 
and fuels has been observed in non-reburn fires 
(i.e., burns after a long period of fire exclusion), 
when weather is primarily moderate (Harris and 
Taylor 2015, Kane et al. 2015, Taylor et al. 2020). 
However, during drought or extreme conditions 
such as high winds, a non-reburn fire can over-
whelm bottom-up controls (Perry et al. 2011, 
Cansler and McKenzie 2014, Povak et al. 2020) 
leading to widespread high-severity fire regard-
less of terrain or fuel characteristics (Lydersen 
et al. 2014). Non-reburn fires may be particularly 
susceptible to an overriding effect of severe 
weather due to increased fire hazard from fire 
exclusion. 

A key reason why non-reburn fires may initi-
ate forest loss is that areas of high-severity fire 
will generally exhibit self-reinforcing fire–vegeta-
tion dynamics that could maintain a non-forest 
state such as shrublands (Coppoletta et al. 2016, 
Lauvaux et al. 2016, Tepley et al. 2017). In forests 
with a frequent (5–25 yr) low-severity fire 
regime, low-severity fire limits fuel buildup and 
promotes a canopy comprised of fire-resistant 
tree species, leading to further low-severity fire 
(Taylor and Skinner 2003, Scholl and Taylor 
2010). In these same forests, areas that burn at 
higher severity due to fuel buildup tend to burn 
at high severity again if the fire initiates changes 
in plant species, vegetation structure, or local cli-
mate that are pyrogenic (Lauvaux et al. 2016, 
Harris and Taylor 2017). Such vegetation-
disturbance feedbacks highlight the role of dis-
turbance legacies in shaping vegetation patterns 
in disturbance-prone landscapes (Peterson 2002, 
Johnstone et al. 2016, Taylor et al. 2020) and sug-
gest that reburn severity may be controlled by 
legacy effects of past fires. Severity patterns, 
however, are not simply regulated by self-
organizing processes, and other factors such as 
terrain, weather, vegetation characteristics, and 
land use also influence fire severity (Taylor and 
Skinner 1998, Harris and Taylor 2017, Parks et al. 
2018). 
In the Klamath Mountains of northwestern 

California and southwestern Oregon, modeling 
of fire–vegetation dynamics suggests that wild-
fire and climate change will drive replacement of 
conifer forest by shrubs and hardwoods over the 
next century (Miller et al. 2018, Serra-Diaz et al. 
2018). Yet, a region-wide empirical assessment of 
the influences on non-reburn and reburn wildfire 
severity is lacking. From 2002 to 2018, the cumu-
lative equivalent of 41% of United States Forest 
Service (USFS) lands in the region burned, one-
third of which had already experienced fire since 
1984 (Fig. 1). Increased fuels from a century of 
fire exclusion (Taylor and Skinner 2003), high 
ignition density from regional lightning storms 
(Hayasaka and Skinner 2009, Skinner et al. 
2018), a drying climate (Williams et al. 2019), 
and long duration fires due to limited suppres-
sion resources in years with high regional fire 
activity have all contributed to high area burned. 
Recent work on fire patterns in the Klamath 

Mountains has found some evidence of self-
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Fig. 1. Reburn and non-reburn portions of fires in our analysis plus perimeters from other fires >404 ha from 
1984 to 2018. Lighter colors represent higher elevations (white is >2000 m). Fires were not analyzed if they 
occurred before 2002, did not overlap National Forest land, or lacked fire progression data, although they were 
included in calculations of fire history. 

limiting and self-reinforcing behavior in reburns, 
related to vegetation type, monthly climate, and 
topography (Alexander et al. 2006, Thompson 
et al. 2007, Odion et al. 2010, Miller et al. 2012, 
Estes et al. 2017, Grabinski et al. 2017). While 
providing important insights on factors con-
tributing to fire severity, these studies do not 
evaluate the full set of known influences on fire 
severity including fuel, topography, and daily 
weather (Agee 1993, Collins et al. 2007, Harris 
and Taylor 2017, Parks et al. 2018, Taylor et al. 
2020). A study by Estes et al. (2017) is an excep-
tion, and they found topographic characteristic 

and vegetation type to be the most important 
variables controlling fire severity, with low influ-
ence by weather and fire history. Estes et al. 
(2017), however, evaluated only five fires in one 
year (2006), and they burned under moderate 
weather conditions. Grabinski et al. (2017) also 
analyzed reburn severity in the Klamath Moun-
tains, yet they did not consider daily weather 
and also analyzed each fire separately rather 
than building a regional-scale model to investi-
gate commonalities. 
Here, we identify controls on fire severity in a 

large landscape with an active fire regime, the 
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Klamath Mountains, for two distinct cases. The 
first is for non-reburns or areas that had not 
burned since 1984, the first year for which data 
are available from the Monitoring Trends in 
Burn Severity (MTBS) program (http://www. 
mtbs.gov/). We refer to this case as “non-
reburn” fire severity. Most (69%) of the non-
reburn area had no prior record of fire accord-
ing to historical fire perimeters from the Califor-
nia Department of Forestry  and  Fire  Protection’s 
Fire Resource and Assessment Program (FRAP, 
version 19-1, http://frap.fire.ca.gov), suggesting 
a history  of  fire exclusion dating back to the late 
1800s or early 1900s. The second case is for fires 
burning after 1984 that burned over a previous 
fire with known fire severity, and we refer to 
this case as “reburn” fire severity. We sought 
answers to two questions: (1) “In forest land-
scapes that are transitioning to an active fire 
regime what are the critical controls of fire 
severity, and how do these controls change 
between non-reburns and reburns?” and (2) 
“When fire-excluded forests experience 
repeated burns, are severity patterns aligned 
more with topography or fire–vegetation inter-
actions?”. We expected  fire severity controls for 
these two  cases to be different  because of dimin-
ished legacy effects from historical fires in the 
first case and strong self-reinforcing effects in 
the second case. Our analyses address broader 
questions on the controls of fire severity in land-
scapes transitioning to an active fire regime, and 
what this implies for future fire severity pat-
terns and ecological fire management. 

STUDY AREA 

The Klamath Mountains bioregion comprises 
much of northwestern California and adjacent 
southwestern Oregon (Fig. 1). The terrain is 
very steep and complex and includes the most 
extensive exposure of ultramafic rocks  in  North  
America (Kruckeberg 1985, Sawyer 2006). Ele-
vations range from 30 to 2755 m. The complex-
ity of the geology and terrain strongly 
influences vegetation structure, composition, 
and productivity (Whittaker 1960, Sawyer 2006) 
and fire regimes. The climate of the Klamath 
Mountains is Mediterranean, with wet/cool win-
ters and dry/warm summers but there are 
strong west–east moisture and temperature 

gradients caused by proximity to the Pacific 
Ocean. Average annual precipitation at Sawyers 
Bar (659 m) in the central Klamath Mountains is 
117.6 cm, and average daily maximum tempera-
tures range from 9.1°C in January  to  32.9°C in  
July. Lightning-ignited fires account for most 
area burned in recent decades vs. human-
ignited fires (Miller et al. 2012), and years with 
widespread and larger fires are usually dryer 
and warmer than the norm (Trouet et al. 2009, 
Skinner et al. 2018). Conifer forests and wood-
lands are found in all elevational zones. Three 
broad forest types are recognized and include 
as follows: (1) a diverse lower montane zone of 
mixed conifer (Pseudotsuga menziesii var. men-
ziesii, Pinus ponderosa, Calocedrus decurrens, 
Pinus lambertiana, Pinus jeffreyi, Abies concolor) 
and evergreen (Arbutus menziesii, Chrysolepis 
chrysophylla, Quercus chrysolepis, Lithocarpus den-
siflorus) and deciduous (Acer macrophyllum, 
Quercus kelloggii, Quercus garryana, Cornus nut-
tallii) hardwoods that co-occur in various mix-
tures and share dominance in a stand, (2) a mid-
upper montane zone where A. concolor is abun-
dant and hardwoods are less important, and 
(3) a subalpine zone with  Abies magnifica var 
shastensis, Tsuga mertensiana, Pinus monticola, 
P. jeffreyii, Pinus albicaulis, Pinus contorta, Pinus 
balfouriana, and  Cercocarpus ledifolius. 
Humans have affected fire regimes and land 

use in the Klamath Mountains in several ways. 
Prior to Euro-American colonization, native peo-
ple in the Klamath Mountains used fire to pro-
mote production of acorns, berries, roots, and 
fiber and to improve hunting conditions (Lewis 
1990, 1993, Lake and Christianson 2019). Euro-
Americans entered the area in 1848, and fire fre-
quency declined with extirpation of Native 
Americans (Fry and Stephens 2006). Fire fre-
quency declined further with the implementation 
of a fire suppression policy in 1905 on newly 
established Forest Service lands (Shrader 1965). 
Since 1964, federal lands have also been desig-
nated as national recreation areas, wilderness, 
and northern spotted owl (Strix occidentalis) late-
successional reserves (LSR). Fire management in 
lands with these designations influences fire 
management practices, which could influence 
fire regime characteristics compared with non-
designated federal lands (Davis et al. 2016, Spies 
et al. 2018). 
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METHODS 

Fires and fire severity 
We analyzed fires occurring from 2002 to 2018 

which had at least 50 ha overlap with each of the 
following National Forests: Klamath, Rogue 
River-Siskiyou, Six Rivers, and Shasta-Trinity 
(Fig. 1). The 50-ha threshold was used to ensure 
that fires burned within National Forest land and 
not just up to its boundary. Only fires within the 
United States Geological Survey’s eight-digit 
watersheds (Seaber et al. 1987) overlapping or 
draining into California (i.e., the study area of 
Flint et al. 2013) were included. Fire perimeters 
and fire severity data were obtained from the 
MTBS program, which includes fires >404 ha 
since 1984 in the western United States (Eiden-
shink et al. 2007). Fires <404 ha were not 
included in this analysis because fire severity 
metrics were not readily available. For analysis 
purposes, we defined “reburn” as an area that 
had burned over a prior fire covered by MTBS, 
and the other areas that had not burned over 
MTBS fires were considered “non-reburns.” Note 
that some “non-reburn” areas did lie within his-
torical fire perimeters prior to 1984, although the 
majority had no recorded fire history (88% of 
sample pixels used in the non-reburn model, see 
Fire history). 

We quantified fire severity using fire severity 
classes and canopy cover loss (CC loss) calcu-
lated from the Relativized delta Normalized 
Burn Ratio (RdNBR), a vegetation change index 
derived from Landsat imagery (Miller and 
Thode 2007). Relativized delta Normalized Burn 
Ratio was classified into low, moderate, or high-
severity fire using thresholds developed from 
fires in the Sierra Nevada (Miller and Thode 
2007). Canopy cover loss from RdNBR was cal-
culated using an equation developed from field 
calibration of fires in the  Sierra Nevada and  Kla-
math mountains (Miller et al. 2009). 

Fire progression 
We created daily fire progression maps to 

determine the role of daily weather on fire sever-
ity. First, daily or near-daily fire progression 
maps were obtained from the Geospatial Multi-
Agency Coordinating Group (GeoMAC, https:// 
data-nifc.opendata.arcgis.com/). Fires that were 
missing near-daily fire progression data were 

excluded from our analysis of fire severity, 
excluding 18 fires and leaving 106 fires for the 
analysis. To fill in temporal gaps, we interpolated 
daily fire detection points from Moderate Resolu-
tion Imaging Spectroradiometer (MODIS) ima-
gery following Parks (2014). We used fire 
detection data from the USDA Forest Service 
Active Fire Mapping Program (https://fsapps. 
nwcg.gov/afm/), assigned fire detection points 
before noon to the previous day of burning and 
used inverse distance weighted interpolation of 
the five closest fire detection points to each pixel 
to produce daily fire progression maps for each 
fire. These maps were then used to assign por-
tions of the GeoMAC-based fire progression 
maps representing >1 d to a single day. 

Fire history 
Fire history was assessed using MTBS data 

for reburns, and the FRAP historical fire perime-
ters data set for non-reburns. From the MTBS 
program,  we  calculated  the time since the last  
fire covered by MTBS for every fire severity 
pixel as well as the severity (RdNBR) of the 
most recent fire. A separate time since last fire 
measure was generated from the FRAP data set, 
which is incomplete (Syphard and Keeley 2016) 
but which extends in time in our study area to 
1878 on USFS lands. We used the FRAP data set 
to create a classified “years since last burn” 
layer for each fire with years divided into 15-yr 
increments plus a class for areas with no fires in 
the database. 

Topography and water balance 
The complex terrain of the Klamath Mountains 

has influenced patterns of both historical fire 
severity and recent fire severity (Taylor and Skin-
ner 1998, Estes et al. 2017). We considered five 
topographic variables as potential influences on 
fire severity: elevation, slope, aspect, topographic 
position, and topographic wetness. A cosine 
transformation (Beers et al. 1966) was applied to 
aspect such that higher values represented north-
eastern aspects. The Topographic Position Index, 
an index of how high or low a focal elevation 
pixel is relative to the surrounding terrain, was 
calculated using a 600 m neighborhood size. We 
also calculated the Topographic Wetness Index 
(TWI), a measure of expected moisture based on 
terrain and water flow (Beven and Kirkby 1979), 
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using the “dynatopmodel” R package (Metcalfe 
et al. 2018). 

Water balance metrics can represent gradients 
of fuel quantity and aridity which in turn influ-
ence fire severity (Parks et al. 2014b). We consid-
ered actual evapotranspiration (AET), which is a 
measure of water availability for plants and cor-
relates with plant productivity and therefore fuel 
accumulation (Stephenson 1990, Parks et al. 
2014b). We also considered climatic water deficit 
(CWD), the difference between potential evapo-
transpiration and AET. Climatic water deficit is a 
measure of water stress and is related to fuel 
moisture (Stephenson 1990, Parks et al. 2014b). 
Mean annual AET and CWD from 1981 to 2010, 
with a native resolution of 270 m, were obtained 
from the 2014 California Basin Characterization 
Model (Flint et al. 2013). 

Weather 
To evaluate the influence of daily weather on 

fire severity, five weather variables were matched 
to the fire progression maps. We first used the 
PRISM data set (Daly et al. 2008) to obtain daily 
maximum temperature at 4 km spatial resolu-
tion. We also calculated daily minimum relative 
humidity from PRISM’s maximum temperature 
and maximum vapor pressure-deficit data sets 
following Daly et al. (2015). To obtain additional 
fire weather metrics, we used the GridMET data 
set (Abatzoglou 2013), which offers daily vari-
ables at 4-km resolution derived by combining 
PRISM data with the North American Land Data 
Assimilation System Phase 2 (NLDAS-2) data set 
(Mitchell et al. 2004). The first variable we used 
from this data set was the energy release compo-
nent (ERC), which combines temperature, 
humidity, and precipitation over time to calculate 
the energy at the flaming front for a particular 
fuel type (Bradshaw et al. 1983) (calculated for 
fuel model G). We also considered average wind 
speed and wind direction. Wind direction was 
cosine-transformed to create two variables rang-
ing from 0 to 2: one in which 0 is west wind and 
2 is east wind (“eastness”), and one in which 0 is 
south wind and 2 is north wind (“northness”). 
The fire progression maps were used to assign 
daily conditions for each fire. Note that many 
daily fire perimeters were covered by just one or 
two pixels of the weather data sets, but we felt 
that these data sets were the best available. 

Vegetation 
Vegetation structure and composition, espe-

cially in terms of conifer forest vs. shrublands 
and hardwood forest, may strongly influence fire 
severity in the Klamath Mountains (Odion et al. 
2010, Grabinski et al. 2017, Miller et al. 2018). To 
represent pre-fire–vegetation structure and com-
position, we used Landfire (Rollins 2009), which 
has versions representing vegetation in 2001, 
2008, 2010, 2012, 2014, and 2016. For each fire, 
we selected the most recent Landfire data set 
which predated the fire, and obtained vegetation 
height, percentage canopy cover, and vegetation 
type data. We consolidated vegetation type data 
into nine broader classes (Table 1). We also used 
the Landfire data to exclude areas classified as 
roads, water, snow or ice, developed, or agricul-
tural land. 
The pre-fire normalized differenced vegetation 

index (NDVI) has also been shown to correspond 
with fire severity because it is an indicator of 
vegetation type and captures gradients of pro-
ductivity and fuel accumulation (Parks et al. 
2018). Therefore, we calculated NDVI using the 
pre-fire imagery from each fire as an additional 
metric of vegetation and fuels. 
Management activities such as logging or 

replanting after a fire have been shown to affect 
fire severity in the Klamath Mountains (Thomp-
son et al. 2007). We evaluated the potential influ-
ence of logging on fire severity using the U.S. 
Forest Service’s Activity Tracking System 
(FACTS) database (https://data.fs.usda.gov/ge 
odata/edw/datasets.php). From this database, we 
created two variables. For areas which had not 
burned since 1984, we generated a categorical 
“time since logging” variable: 0–15 yr, 15–30 yr, 
>30 yr, and no prior logging. For reburned areas 
which had experienced fire since 1984, we 
assessed whether or not the area had been 
logged between the initial fire and the reburn. 
We added these variables into our statistical 
models of fire severity (see Statistical modeling) 
but found that they did not improve model accu-
racy. Therefore, the logging variables were 
excluded from the final statistical models. 

Area burned and land ownership 
To provide context for our analysis of fire 

severity, we calculated annual area burned, 
annual area reburned, and the breakdown of fire 
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Table 1. Variables used in statistical models of fire severity. 

Category Variable Reference/Source Details 

Response Fire severity Monitoring Trends in Burn Relativized delta Normalized Burn Ratio 
Severity (MTBS, Eidenshink (RdNBR) classified into low, moderate, 
et al. 2007) and high-severity fire following Miller 

and Thode (2007) 
Fire history Prior fire severity (canopy MTBS RdNBR converted into tree canopy cover 

cover loss) loss following Miller et al. (2009) 
Fire history Years since last burn FRAP fire perimeters (non- Numeric for reburns, for non-reburns 

reburns) or MTBS (reburns) classified into: <15 yr, 15–29, 30–44, 
45–59, ≥60, no prior fire 

Topography Elevation National Elevation Data set 30 m digital elevation model 
(NED, https://apps.nationa 
lmap.gov/) 

Topography Slope From NED 
Topography Aspect From NED Cosine-transformed (Beers et al. 1966) 

such that 0 is southwest, 2 is northeast 
Topography Topographic Position Index Weiss (2001), from NED 600-m neighborhood size 
Topography Topographic Wetness Index Beven and Kirkby (1979), from Using “dynatopmodel” R package 

NED (Metcalfe et al. 2018) 
Water balance Actual evapotranspiration Flint et al. (2013) 1981–2010 means 
Water balance Climatic water deficit Flint et al. (2013) 1981–2010 means 
Weather Maximum temperature PRISM (Daly et al. 2008) 
Weather Minimum relative humidity PRISM Calculated following Daly et al. (2015) 
Weather Energy release component Bradshaw et al. (1983), from 

GridMET (Abatzoglou 2013) 
Weather Average wind speed GridMET 
Weather Wind direction GridMET Cosine-transformed into “eastness” 

(0 = west, 2 = east) and “northness” 
(0 = south, 2 = north) 

Vegetation Vegetation height Landfire (Zhu et al. 2006) Most recent pre-fire version of Landfire 
selected for each fire 

Vegetation Tree canopy cover Landfire (Zhu et al. 2006) 
Vegetation Vegetation type Landfire (Zhu et al. 2006) Classified into: sparsely vegetated, 

shrub, oak, pinyon-juniper, pine/mixed 
conifer, Douglas fir/hemlock, 
fir/subalpine, aspen, riparian 

Vegetation Normalized Differenced MTBS pre-fire Landsat image 
Vegetation Index 

Land Land type National Boundary Data set Divided into wilderness, LSR, U.S. Forest 
ownership (https://apps.nationalmap. Service, Bureau of Land Management, 

gov/), Late-Successional National Park Service, and other 
Reserves (LSRs) from the 
Northwest Forest Plan 
(https://www.fs.fed.us/r6/reo/) 

severity classes within the study area from 1984 
to 2018. We also evaluated whether variation in 
annual area burned and percentage of low or 
high-severity fire was associated with climatic 
warming by calculating Spearman rank correla-
tions (rS) with May–October maximum tempera-
ture and water-year (October–September) total 
precipitation for the North Coast region from the 
California Climate Tracker (https://wrcc.dri.edu/ 
Climate/Tracker/CA/). Only significant (P < 0.05 
with a Holm-Bonferroni correction applied) cor-
relations were reported. 

To assess the potential impact of land designa-
tion and ownership on fire severity, we divided 
the study area into the following land types: 
wilderness, other LSRs in the Northwest Forest 
Plan, USFS, Bureau of Land Management, 
National Park Service, and all other land owner-
ships. To determine whether rates of burning 
varied on USFS land according to wilderness or 
LSR designations, we used fire rotations. The fire 
rotation is the length of time needed to burn an 
area of interest (our study area) which is calcu-
lated by dividing the time period of interest by 
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proportion of study area burned in that time per-
iod (Heinselman 1973). United States Forest Ser-
vice lands in the study area included 5181 km2 of 
wilderness, 8394 km2 of other LSRs, and 
13,562 km2 of other USFS land. 

Statistical modeling 
To analyze influences on non-reburn and 

reburn fire severity, we used two statistical mod-
els. Individual fires (n = 106) were partitioned 
into their non-reburn and reburn portions for 
analysis, and therefore, 92 non-reburn fires and 
61 reburn fires were represented in the analysis 
(Fig. 1; Appendix S1: Tables S1, S2). For each 
model, fire severity categorized as unchanged— 
low, moderate or high following Miller and 
Thode (2007) was the response variable. We 
derived a set of fire history, terrain, vegetation, 
and weather variables as predictors (Table 1). 
For the purpose of generating model predictions, 
rasters of all input variables were resampled to 
match the 30 m pixel size of the fire severity ras-
ter using bilinear interpolation for continuous 
variables and nearest neighbor resampling for 
categorical variables. 

Prior to modeling, pixels from all fires were 
sampled using a grid with 800 m spacing 
between points to reduce the influence of spatial 
autocorrelation of predictor variables on the 
model results. Although individual fire severity 
and vegetation characteristics may be spatially 
autocorrelated at distances of up to 2000 m 
(Odion et al. 2010), sampling distances of 
<300 m are often sufficient to address problems 
related to spatial autocorrelation in statistical 
models of fire severity similar to ours (Kane et al. 
2015, Povak et al. 2020, Taylor et al. 2020). Our 
use of 800 m follows Harris and Taylor (2017), 
who found that using closer spacings down to 
200 m did not substantially alter their results but 
concluded that 800 m was a safer and more con-
servative choice if the study area is large enough 
to maintain a sufficient sample size at 800 m. 
As our modeling framework, we used random 

forest (RF), which builds ensembles of classifica-
tion trees (Breiman 2001). Random forest is adept 
at dealing with non-linear relationships between 
predictor and response variables and with inter-
actions between variables, both of which are fre-
quent characteristics of ecological data (Cutler 
et al. 2007). Because imbalanced class sizes in the 

response variable may affect RF results, we ran-
domly sampled from the more abundant classes 
such that each class was of equal size (Chen et al. 
2004) by specifying “sampsize” in the ran-
domForest R package (Liaw and Wiener 2002). 
We used default values of 500 trees and the 
square root of the number of predictors consid-
ered at each node (Liaw and Wiener 2002). 
The non-reburn and reburn models shared 

most of the same predictor variables, chosen a 
priori based on knowledge of the Klamath 
Mountains and of the drivers of fire severity. We 
confirmed that no pair of variables was strongly 
correlated (Spearman rank correlation ≥0.8 or 
≤�0.8) prior to analysis. The only differences 
between the variables considered for the two 
models were that the FRAP fire history was used 
in the non-reburn model while years since last 
burn from MTBS and prior fire severity (CC loss) 
were used in the reburn model. These variables 
and their distributions are shown in Figs. 2, 3. 
To assess model accuracy, we randomly with-

held 30% of individual fires from each model as 
a test data set. Models of fire severity are well-
suited to such a validation process because each 
fire comprises an independent event (Parks et al. 
2018). The training data set contained 9517 non-
reburn sample pixels and 3713 reburn sample 
pixels, and the test data set contained 2895 non-
reburn and 1738 reburn samples. Using the test 
sets, we generated confusion matrices, within-
class classification error rates and overall error 
rates. We compared these metrics with corre-
sponding ones from the out-of-bag (OOB) esti-
mates, or the estimates from the portion of the 
data that is withheld when building each classifi-
cation tree (Breiman 2001). We also quantified 
variable importance, both overall and within 
each severity class, based on the increase in over-
all and within-class classification error when an 
individual variable is permuted (Breiman 2001, 
Liaw and Wiener 2002). These importance values 
were converted to the “model improvement 
ratio” (MIR) which has the advantage of being 
comparable among models (Murphy et al. 2010). 
In the MIR, 1 indicates the most important vari-
able, 0 indicates no contribution to model accu-
racy, and negative values indicate a negative 
contribution. To show the marginal effect of each 
predictor variable on fire severity, we also cre-
ated partial dependence plots using the “pdp” 
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Fig. 2. Partial dependence plots showing the effects of individual variables on the probability of low-severity 
fire for non-reburn fires. Black lines indicate partial dependence, with higher y-axis values (left) indicating greater 
probability of low-severity fire. Histograms (gray bars, axes on right) show the distribution of each variable. Vari-
ables are ordered from most important to least important from top left to bottom right, and only the top 12 vari-
ables are shown (see Appendix S1: Fig. S1 for other variables). See Table 1 for full variable names. 

R package (Greenwell 2017). Because both mod-
-

gauge the relative influence of prior fire severity 
on reburn severity. els predicted low-severity fire better than moder

ate or high severity, we chose to display the 
probability of low-severity fire using the partial RESULTS 
dependence plots (Figs. 2, 3). For the reburn 
model, we performed additional model runs 
with just previous fire severity and with every 
variable except previous fire severity to further 

Area burned, fire severity, and fire rotations 
Annual area burned in the study area was pos-

itively correlated with May–October temperature 
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Fig. 3. Partial dependence plots showing the effects of individual variables on the probability of low-severity 
fire in reburns. Black lines indicate partial dependence, with higher y-axis values (left) indicating greater proba-
bility of low-severity fire. Histograms (gray bars, axes on right) show the distribution of each variable. Variables 
are ordered from most important to least important from top left to bottom right, and only the top 12 variables 
are shown (see Appendix S1: Fig. S2 for other variables). See Table 1 for full names of variables. Land types are 
as follows: wilderness, late-successional reserves, National Forest, Bureau of Land Management, National Park 
Service, other. 

(rS = 0.73, P < 0.001; Fig. 4) and negatively cor- severity was slightly higher in reburns: 41% low, 
related with water-year precipitation (rS = �0.42, 
P < 0.05) between 1984 and 2018. Overall, fire 
severity in non-reburns from 1984 to 2018 was 
47% low, 25% moderate, and 27% high. Fire 

30% moderate, and 29% high. The annual per-
centages of low or high-severity fire were not sig-
nificantly correlated with temperature or 
precipitation. 
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Fig. 4. Area burned annually from 1984 to 2018 (green) and reburned area (orange) in the study area, with 
May–October maximum temperature shown (red line). 

Fire rotations from 1984 to 2018 were 67 yr on 
all USFS land: 49 yr in LSRs, 39 yr in wilderness 
areas, and 103 yr in other USFS lands. Consider-
ing just the 2002–2018 period of analysis, fire rota-
tions shortened to 36, 24, and 66 yr, respectively, 
for these land types (42 yr for all USFS lands). 

Model accuracy 
The two statistical models had similar OOB 

classification error, but the reburn model had a 
lower test set error rate than the non-reburn 
model indicating better transferability (Table 2). 
The reburn model predicted high-severity fire 
with higher accuracy than the non-reburn model, 
though both performed relatively poorly at pre-
dicting the high-severity class (52% vs. 67% test 
set error). Both models performed best at predict-
ing low severity and worst at predicting 
moderate-severity fire. Maps of predicted fire 
severity tended to be visually similar to observed 
severity, as illustrated in Fig. 5. 

Non-reburn fire severity 
The strongest influences on fire severity in 

non-reburns were NDVI and weather, with some 
moderately important terrain and water balance 
variables (Fig. 6). Although NDVI was important 
across all three fire severity classes, the MIR dif-
fered sharply by class for other variables 

indicating greater importance of weather for 
high-severity fire. Notably, wind speed was the 
most important variable predicting high-severity 
fire but in the bottom third of importance rank-
ings for low severity and moderate severity, 
whereas tree canopy cover was the most impor-
tant variable for low-severity fire but in the bot-
tom third for high-severity fire. 
Normalized differenced vegetation index was 

the most important variable, and its partial 
dependence plot showed that low-severity fire 
was least likely at 0.6 and most likely at high val-
ues of >0.8, followed by lower values of ˜0.2 
(Fig. 2). Areas that burned with low wind 
speeds, low maximum temperatures, and high 
relative humidity were more likely to burn at 
low severity, and low ERC was also linked to 
low-severity fire (2nd–5th in overall importance). 
The two moderately important wind direction 
variables indicated that fire severity was lower 
when winds were from the west and the south. 
The Landfire-derived vegetation variables were 
in the bottom half of overall variable importance 
and indicated that low-severity fire was more 
likely in areas with high tree canopy cover and 
tall vegetation and least likely in pine/mixed con-
ifer forest, oak woodlands, and shrublands. 
Water balance and terrain were of moderate 

importance in the non-reburn model. Low-
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Table 2. Confusion matrices from the non-reburn (top) and reburn (bottom) models of fire severity, showing pre-
dicted fire severity classes from the 30% of fires withheld as a test set and predictions from the “out-of-bag” 
sample from the model. 

Model data set Predicted severity Low Moderate High Error rate (%) 

Test set, non-reburn (52.2%) Low 946 276 256 36.0 
Moderate 365 233 196 70.7 

High 263 157 203 67.4 
Out-of-bag, non-reburn (41.8%) Low 2771 593 517 28.6 

Moderate 989 760 751 68.6 
High 632 500 2004 36.8 

Test set, reburn (45.7%) Low 419 120 46 28.4 
Moderate 187 227 115 57.1 

High 168 158 298 52.2 
Out-of-bag, reburn (43.0%) Low 1165 318 142 28.3 

Moderate 413 406 305 63.9 
High 177 242 545 43.5 

Note: Overall classification error rates are shown in parentheses at left. Columns show observed fire severity, and the 
within-class error rate for each fire severity class is shown at right. 

severity fire was least likely at intermediate ele-
vations of 800–1200 m (7th most important; 
Fig. 2). Actual evapotranspiration and CWD (6th 
and 9th) both had bimodal relationships with the 
likelihood of low-severity fire indicating higher 
severity at intermediate values. The other terrain 
variables were relatively unimportant and indi-
cated that fire severity was lower in valleys, gen-
tle slopes, northeastern aspects, and areas with a 
high TWI. 

Land type and time since last fire were of low 
importance in the non-reburn model. Wilderness 
areas and LSR were associated with low-severity 
fire, and areas with no recorded fire history were 
least likely to experience low-severity fire. 

Reburn fire severity 
In the reburn severity model, prior fire severity 

(CC loss) was more than twice as important as 
any other variable and indicated that areas 
burned at low (high) severity previously tended 
to burn again at low (high) severity (Fig. 3). In 
fact, the reburn severity model performed as well 
when run with prior CC loss as the only variable 
as it did when run with all other variables com-
bined (both 51% test set error rate). Low-severity 
fire was more likely in areas burned <10 yr ago 
according to the years since last burn variable 
(2nd most important) (Fig. 3). 

Variable importance ranks were notably differ-
ent between the two models: vegetation includ-
ing vegetation height and tree canopy cover 

were more important in the reburn model than 
the non-reburn model whereas weather variables 
such as temperature and wind speed were near 
the top of the non-reburn model but near the bot-
tom of the reburn model (Figs. 6, 7). Variable 
importance was also similar for the low- and 
high-severity classes within the reburn model, in 
contrast to the non-reburn model. 
The shape of variable response relationships 

with fire severity was broadly similar between 
both models with three exceptions. First, reburn 
severity was higher at the highest NDVI values 
(>0.6) whereas non-reburn severity was lower 
with high NDVI (Figs. 2, 3). Second, low-severity 
fire was more likely at intermediate elevations of 
800–1200 m in reburns than non-reburns. Third, 
the relationship of fire severity in LSRs and USFS 
land flipped between the two models with rela-
tively higher reburn severity in LSR and rela-
tively lower reburn severity on USFS land. 

DISCUSSION 

Our goal was to identify how controls on fire 
severity change as reburns become more com-
mon in a region that experienced a long period 
of fire suppression followed by 34 yr of burning 
by wildfires. We found that the importance of 
fire severity drivers contrasted sharply between 
non-reburns, where weather was highly influen-
tial, and reburns, where prior fire severity and 
fuels were dominant. Our results suggest that in 
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Fig. 5. Observed and modeled fire severity classes (blue = low, yellow = moderate, red = high) for three wild-
fires in the analysis, shown to illustrate the performance of the non-reburn and reburn models. The percentage 
match between observed and predicted fire severity is shown in the “predicted” columns along with whether the 
fire was in the training or test data set for each model. 

a reburn scenario, fire severity is more pre-
dictable in the sense that it depends on fire his-
tory and fuels that are readily characterized and 
mapped in advance, rather than the stochastic 
influences of fire weather which are difficult to 

predict. This contrast in fire severity drivers has 
implications for forest and fire management as 
we enter an era of active fire regimes. 
Although some work has found that fire sever-

ity is dampened in reburns (Parks et al. 2014b, 
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Fig. 6. Variable importance (model improvement ratio) from the random forest model of non-reburn fire sever-
ity as calculated across all fire severity classes and within each fire severity class (see legend). NDVI, normalized 
differenced vegetation index. 

Harvey et al. 2016, Prichard et al. 2017), we 
found instead that reburn severity in the Kla-
math Mountains was higher on aggregate than 
non-reburn severity, in agreement with the find-
ings of Grabinski et al. (2017) who studied a sub-
set of the same reburns. Although fully 
explaining why fire severity was higher in 
reburns is beyond the scope of this study, several 
possibilities merit further investigation, includ-
ing the following: (1) Abundant coarse woody 
debris left after non-reburn fires might increase 
fire hazard (Coppoletta et al. 2016), in which case 
fire severity might decrease after the first reburn 
once these fuels are consumed, (2) moderate and 
high-severity patches might grow in size with 
successive fires as higher-severity fire creeps into 
surrounding forest, in which case fire severity 
might continue to increase over successive fires 
barring active management, and (3) fire initiates 
an increases in pyrophytic shrubs and grasses 
(Coop et al. 2016, Lauvaux et al. 2016) that 
increase severity of subsequent fires due to posi-
tive feedbacks causing an upward drift in fire 

severity that is exacerbated by a warming climate 
(Serra-Diaz et al. 2018, Williams et al. 2019). This 
upward drift in fire severity suggests that a tran-
sition from fire exclusion to an active fire regime 
may be insufficient to stabilize fire severity and 
limit fire-initiated forest loss, particularly if fires 
tend to occur under extreme weather. 
As area burned continues to increase across 

western U.S. forests (Abatzoglou and Williams 
2016, Westerling 2016), focus will shift from what 
drives fire severity in areas with substantial fire 
deficits (Marlon et al. 2012) to how disturbance 
legacies shape reburn severity. According to 
Miller et al. (2012), 20th-century fire rotations in 
northwestern California (a similar study area to 
ours) reached a high of almost 1000 yr in 1960– 
1984 but declined to 95 yr for 1984–2008, similar 
to our calculated fire rotations of 87 yr for USFS 
land over that period. With the spate of recent 
large fires, our 2002–2018 fire rotations are 
approaching fire rotation estimates before fire 
suppression (Taylor and Skinner 1998, 2003, Ste-
phens et al. 2007). Thus, the Klamath Mountains 
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Fig. 7. Variable importance (model improvement ratio) from the random forest model of reburn fire severity 
as calculated across all fire severity classes and within each fire severity class (see legend). NDVI, normalized dif-
ferenced vegetation index. 

are rapidly transitioning from a region with a 
high fire deficit to one with an active fire regime, 
and area burned is likely to continue increasing 
in the future with climate change given the posi-
tive correlation we found between area burned 
and fire-season temperature. 

Non-reburn fire severity 
Fire weather, which was the key driver of espe-

cially high-severity fire in our non-reburn model, 
has been identified as a key driver of area burned 
and area burned at high severity in recent wild-
fires in other regions of the western USA (Lyder-
sen et al. 2014, Abatzoglou and Williams 2016, 
Parks et al. 2018, Williams et al. 2019). Wind 
speed, which we found to be particularly influen-
tial, increases flame length and rate of spread 
amplifying fire effects and potential for passive 
or active crown fire, particularly in steep terrain 
(Agee and Skinner 2005, Andrews 2018). We also 
found that severity was lower (higher) with 
westerly (easterly) winds off the Pacific (Great 
Basin). High velocity winds from the northeast in 

this region are characteristically warm and dry 
(Schroeder and Buck 1970, Brewer et al. 2012) 
and often associated with large and severe wild-
fires in California (Skinner and Taylor 2018, Mass 
and Ovens 2019) and the Pacific Northwest 
(Schroeder and Buck 1970, Agee 1993). 
The strong influence of weather on high-

severity fire in non-reburns may account for the 
poor accuracy with which high-severity fire was 
predicted, because our weather data were daily 
and 4-km resolution whereas fire weather may 
vary dramatically hour-to-hour and over short 
distances in steep terrain. For these reasons, lack 
of sub-daily fire progression and fine-scale 
weather data are key limitations on the accuracy 
of statistical models of wildfire severity (Viedma 
et al. 2020). Moreover, incised topography and 
steep elevation gradients of the Klamath Moun-
tains contribute to strong thermal inversions that 
trap smoke in the steep, narrow canyons reduc-
ing temperature (Robock 1988, Kochanski et al. 
2019) and potentially fire effects, which we did 
not consider in our model. In summary, our 
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relatively limited characterization of weather 
compared with terrain and fuels may explain 
why low-severity predictions were more general-
izable than high-severity predictions (i.e., trans-
lated better to the independent test data set). 

In contrast to high-severity fire, we found that 
low-severity fire in non-reburns was strongly 
influenced by fuels, specifically areas with higher 
canopy cover and tall vegetation indicating more 
mature forests with larger diameter, more fire-
resistant trees which would reduce fire damage 
(Odion et al. 2004, Miller et al. 2012). Low-
severity fire also occurred when NDVI was low 
(˜0.2), possibly due to sparse fuels sometimes 
associated with nutrient-poor soils on ultramafic 
rock (Whittaker 1960, Damschen et al. 2010), and 
where NDVI was high, possibly because high 
NDVI indicates typically moist meadows or sub-
alpine forest. The relatively higher fire severity 
we observed at negative NDVI values was unex-
pected, yet the fact that we observed this 
response in the reburn model as well suggests 
that it was not simply the result of model overfit-
ting. Normalized differenced vegetation index 
tends to be low in areas of drought-stressed or 
dead vegetation (Pettorelli et al. 2005, Brodrick 
and Asner 2017), but negative NDVI could also 
indicate wet areas or developed areas not repre-
sented by Landfire. Further analysis would be 
needed to determine the mechanisms behind this 
correspondence between negative NDVI and 
moderate–high-severity fire. 

A hallmark of the Klamath Mountains is steep 
and complex terrain, and high-severity fire both 
before fire suppression (Taylor and Skinner 1998) 
and since 1984 (Weatherspoon and Skinner 1995, 
Jimerson and Jones 2003, Estes et al. 2017, Gra-
binski et al. 2017) was associated with ridgetops 
and southwestern aspects. Although we found 
that terrain had these same directional relation-
ships with fire severity, the low importance of 
terrain in both our fire severity models is notable 
and suggests that the strong terrain controls on 
wildfire severity seen in the past may not neces-
sarily carry into the future. 

Reburn fire severity 
Controls on reburn severity were markedly 

different than for non-reburns. A strong self-
reinforcing effect of prior burn severity domi-
nated our reburn severity model, being as 

important as all other variables combined. More-
over, the top five variables in the reburn model 
were fire history and vegetation variables. The 
importance of prior fire severity and vegeta-
tion/fuel variables is also evident in analyses of 
both small numbers of overlapping fires in the 
Klamath Mountains (Thompson et al. 2007, Estes 
et al. 2017), the Sierra Nevada (Collins et al. 
2007, Harris and Taylor 2017), and American 
Southwest (Coop et al. 2016, Walker et al. 2018) 
and in multi-region and west wide studies (Parks 
et al. 2014b, Harvey et al. 2016, Stevens-Rumann 
et al. 2016) that include large numbers of over-
lapping fires. These studies, and our own, high-
light a self-reinforcing pattern of reburn fire 
severity modulated by time since last fire and 
rates of fuel accumulation. Shorter periods 
(<10 yr) between reburns increase the probability 
of low-severity fire with a diminishing effect at 
longer fire intervals. A similar time since fire 
effect on reburn severity has been identified in 
other montane forests in California (Collins et al. 
2009, Harris and Taylor 2017) and the western 
United States (Parks et al. 2014b, Harvey et al. 
2016) with the effect lasting 10–20 yr. 
Self-reinforcing fire severity in the Klamath 

Mountains is likely because severe fire initiates 
rapid establishment of evergreen shrubs and 
trees from sprouts or a soil seedbank which 
impedes conifer regeneration for at least several 
decades (Lauvaux et al. 2016, Tepley et al. 2017) 
with greater reduction as patch size increases. 
Self-reinforcing behavior in reburns in a land-
scape with an active fire regime would likely 
maintain these shrublands and non-conifer forest 
(Thompson and Spies 2009, Odion et al. 2010, 
Grabinski et al. 2017), particularly as fire activity 
increases with projected climate warming (Serra-
Diaz et al. 2018). In addition, high-severity forest 
fire may encourage invasion of pyrogenic non-
native plant species in the Klamath Mountains 
and throughout the western USA, which may 
promote further high-severity fire (Kerns et al. 
2020, Reilly et al. 2020). 

Limitations and model accuracy 
Our study has a number of limitations. First, 

our analysis of drivers of fire severity was mainly 
limited to the period after 2002 when near-daily 
fire progression maps were available. We did not 
consider small fires <404 ha, although fire 
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severity studies that have investigated inclusion 
of smaller fires concluded there would be little 
effect due to small area burned (Harris and 
Taylor 2017, Huang et al. 2020). Management 
practices such as salvage logging and tree plant-
ing post-fire can influence subsequent fire sever-
ity (Thompson et al. 2007), but considering these 
and other management practices as reported in 
the USFS Activity Tracking System (FACTS) 
database (https://data.fs.usda.gov/geodata/edw/ 
datasets.php) did not improve the severity mod-
els. The record of these management actives is 
likely incomplete since they were not required to 
be reported to the FACTS database over our per-
iod of analysis. Although past logging should 
strongly influence fuels and therefore fire sever-
ity, the other vegetation variables in our model 
likely account, in part, for these effects on fuels. 
For example, recent logging should be reflected 
in decreased vegetation height. 

Comparison of our model accuracy with other 
studies is challenging due to differences in the 
response variable (e.g., number of categories of 
severity) and the array of variables and data sets 
considered as predictors. Our random withhold-
ing of a set of fires to use as a test data set distin-
guishes our study from the prior work of Estes 
et al. (2017) and Grabinski et al. (2017) in the 
Klamath Mountains. Indeed, the gap between 
model accuracy as calculated using the OOB data 
vs. the test data sets in our study, particularly for 
non-reburns, underscores the importance of 
using a test data set of separate fire events when 
assessing accuracy. In this respect, the most rele-
vant comparison is to Parks et al. (2018), who 
used some of the same predictor variables, 
included daily weather, and withheld individual 
fire events to assess model accuracy. They 
achieved modestly higher accuracy (area under 
curve = 0.68) for fires in the Klamath Mountains 
using only two fire severity classes (which 
should confer greater accuracy than three 
classes) and found fuel and weather to be more 
important than terrain as we did. We felt that 
including a moderate-severity class was impor-
tant to represent the broad gradient between 
low-severity fire with minimal impact on canopy 
vegetation and high-severity fire that is stand-
replacing or nearly stand-replacing, but moder-
ate severity was predicted poorly. The breadth of 
fire effects included within “moderate severity” 

makes analysis of this category difficult (Lyder-
sen et al. 2016) and makes reburn severity diffi-
cult to predict due to the diversity of post-fire– 
vegetation responses in moderate-severity areas 
(Collins et al. 2018). Future possibilities to 
improve statistical models of pixel-level fire 
severity such as ours include mapping sub-daily 
fire progression to more accurately characterize 
weather (Viedma et al. 2020), incorporating more 
complete information on forest and fire manage-
ment activities, and quantifying other aspects of 
weather such as atmospheric inversions that trap 
smoke (Estes et al. 2017) and atmospheric insta-
bility leading to plume-driven fire behavior 
(Lydersen et al. 2014). 

Conclusions and Management Implications 
In the Klamath Mountains, non-reburns were 

strongly shaped by the interplay of fuel abun-
dance and fire weather, with some modulation 
by topography. Low importance of terrain and 
vegetation characteristics likely reflects fuel 
buildup from a century of fire exclusion which 
overrode other controls on fire severity such as 
vegetation structure and terrain. Reburn severity, 
in contrast, was driven mainly by the initial burn 
severity and characteristics of post-fire–vegeta-
tion that developed after the initial fire. Initial 
burn severity was maintained by subsequent 
fires through strong self-reinforcing behavior; 
the importance of initial burn severity exceeded 
that of all other variables combined in the reburn 
model. Drivers of both non-reburn and reburn 
fire severity suggest that the historical patterns of 
wildfire severity that were controlled by topogra-
phy (Taylor and Skinner 1998, 2003, Skinner 
et al. 2018, Hessburg et al. 2019) are shifting due 
to the effect of fire weather in a fuel-rich land-
scape on the one hand, and strong self-
reinforcing behavior on the other. Consequently, 
the emerging patterns of fire severity in the Kla-
math Mountains will strongly determine future 
vegetation structure as the landscape continues 
to transition to an active fire regime. 
Our findings that drivers of fire severity shift 

as landscapes transition to an active fire regime 
are relevant to resource agencies that seek to 
maintain and restore fire resilience to fire-
excluded forest landscapes under a changing cli-
mate (Long et al. 2014, USDA Forest Service 
2015, Board of Forestry 2018). Climate warming 
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is expected to increase the length of the fire sea-
son (Westerling 2016), increase fuel aridity (Wil-
liams et al. 2019), and will likely increase the 
number of days that experience high and 
extreme fire weather (Goss et al. 2020, Abat-
zoglou et al. 2021). These climate factors and the 
high fuel loads characteristic of fire-excluded for-
ests are strong contributors to the increase in for-
est area burned and forest area burned at high 
severity during the last three decades across the 
western United States (Abatzoglou and Williams 
2016, Westerling 2016, Parks and Abatzoglou 
2020) and in the Klamath Mountains. In the fuel-
rich portions of the landscape, non-reburns had 
low- and moderate-severity fire effects when 
they burned under moderate fire weather condi-
tions. Importantly, these low- and moderate-
severity effects were sustained when these areas 
burned again within 10 yr, even if reburn 
weather conditions were more extreme. A 
reduced probability of high-severity fire after 
fuel reduction by wildfire or prescribed fire is 
typical in a wide range of forest ecosystems 
(Parks et al. 2014a, Harris and Taylor 2017, Pri-
chard et al. 2017, Walker et al. 2018) and indi-
cates landscape-scale burning can mitigate fuel 
conditions that contribute to high-severity fire 
and related undesirable shifts to non-forest vege-
tation (Lauvaux et al. 2016, Tepley et al. 2017). 

Recent simulations of fire and forest dynamics 
in the Klamath Mountains also show that when 
landscape scale prescribed fire, and low-intensity 
wildfires, burn under moderate conditions fuels 
are reduced and the potential for vegetation 
change under future climate change is lowered 
when compared to a more extreme wildfire sce-
nario (Maxwell et al. 2020). National direction 
allows for the use of unplanned ignitions, or 
wildfires, to meet multiple objectives, especially 
when the wildfire is likely to produce an ecologi-
cal benefit and promote firefighter safety (2014 
National Cohesive Wildland Fire Management 
Strategy). However, wildfire use for resource 
management or ecological benefit is not permit-
ted on National Forest lands in the Klamath 
Mountains because their Land Management 
Plans do not yet provide for it. The active fire 
regime of mainly low- and moderate-severity 
fires that have developed over the past 34 yr has 
occurred under fire suppression management 
responses—control, confine, or contain which 

minimize costs while protecting lives and prop-
erty and minimizing negative resource impacts 
(FLAME act 2009, Skinner et al. 2018). Our 
results suggest that improved resource outcomes 
and increased resilience to wildfire and climate 
change would likely be achieved through delib-
erate use of wildfire and prescribed fire for 
resource benefit and would increase area burned 
under more moderate and desirable conditions. 
As the active fire regime in the Klamath Moun-
tains continues to develop, our data support 
changing National Forest Land Management 
Plans and accompanying Fire Management Plans 
to enable a more ecological approach to fire man-
agement where wildfires can be managed to cre-
ate more fire resilient landscapes. 
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