Shasta River Watershed Stewardship

Summary of Water Quality Assessment & Planning Efforts

Karen Mallory Shasta Valley Resource Conservation District

Steve Butkus North Coast Regional Water Quality Control Board

> Klamath Basin Monitoring Program General Membership Meeting November 5, 2014

Shasta Stewardship Report Team

- Shasta Valley Resource Conservation District staff funded by 2013 CWA 319h grant
- North Coast Regional Water Quality Control Board staff
- Klamath Basin Monitoring Program staff
- Input from Partners, to date primarily: CA Dept. Fish and Wildlife US Fish and Wildlife Service

What is the Shasta Stewardship Report?

- Is a non-regulatory document to identify successful completed stewardship actions in the Shasta Basin
- Presents a guideline for future stewardship actions to further improve water quality conditions
- Identifies current water quality monitoring and trends
- Introduces a watershed-scale stewardship-based adaptive management process
- Provides opportunities for direct feedback from local stakeholders and partner organizations

Major Report Components

- Watershed Partners 31 agencies/groups identified
- Watershed Description
- Water Quality Constituents of Concern
- Water Quality Issues of Concern
- Shasta River Watershed Action Plan: Stewardship Actions Adaptive Management Shasta Watershed Monitoring Plan
- Appendices, including WQ Assessment

Water Temperature Assessments

- Salmonid Species Life Cycle Use Support
 Chinook Salmon
 Coho Salmon
 Steelhead Trout
- Temperature TMDL Target Compliance
- Spatial Trend
- Temporal Trends
- Meteorological Influences on Temporal Trend

Data Sources

Water Temperature Measurements were collected 1991 - 2012 by:

- California Department of Fish and Wildlife
- The Nature Conservancy
- Shasta Valley Resource Conservation District
- Shasta Valley Coordinated Resource Management Planning group
- Montague Water Conservation District
- North Coast Regional Water Quality Control Board
- California Department of Water Resources
- U.S. Geological Survey
- U.S. Fish and Wildlife Service
- Karuk Tribe
- McBain and Trush Consultants
- Various researchers, including the University of California, Davis

Life-Stage Water Temperature Thresholds

Lethal Water Temperature Thresholds

Life Stere	Maximum Daily Water Temperature (°C)		
Life Stage	Chinook	Coho	Steelhead
Adult Migration	25	25	24
Juvenile Rearing	25	25	24
Spawning, Egg Incubation, Fry Emergence, and Out-migration	20	20	20

Sub-Lethal Water Temperature Thresholds

Life Stage	MWMT (°C)
Adult Migration	20
Juvenile Rearing	18
Spawning, Egg Incubation, Fry Emergence, and Out-migration	13

Chinook Salmon – Adult Migration

Lethal Threshold = $25^{\circ}C$

Mile: 10

2.5

Data Collected 2010-2013

Chinook Salmon – Spawning

Chinook Salmon – Egg Incubation

Lethal Threshold = $20^{\circ}C$

Chinook Salmon Egg Incubation Periodicity Sept 15 - Feb 28

Data Collected 2010-2013

25

Chinook Salmon – Fry Emergence

Lethal Threshold = $20^{\circ}C$

Chinook Salmon Fry Emergence Periodicity Nov 1- Mar 31

Data Collected 2010-2013

Chinook Salmon – Juvenile Rearing

Lethal Threshold = $25^{\circ}C$

Chinook Salmon Juvenile Rearing Periodicity Jan 1- Dec 31

Data Collected 2010-2013

Chinook Salmon – Juvenile Out-migration

Lethal Threshold = $20^{\circ}C$

Chinook Salmon Juvenile Out-migration Periodicity Feb 1 – July 15

Data Collected 2010-2013

TMDL Targets

Compliance Locations	TMDL Target 5-day Mean of Daily Maximum Temperatures (°C)	Year	Percentage of Measurements that Exceed theTMDL Target
Shasta River Mile 15.5	17.49	2007	85%
		2008	91%
		2009	85%
		2010	64%
		2011	88%
		2012	90%
		2013	94%
Shasta River Mile 24.1	16.71	2010	66%
		2011	88%
		2012	100%
		2013	95%

TMDL Targets are Modeled Estimates needed to meet the Narrative Objective of Basin Plan

"Natural receiving water temperatures shall not be altered"

Spatial Trend

Temporal Trend

Temporal Trend

Seasonal-Kendall Trend Test

- Nonparametric Distribution Free
- Accounts for seasonal changes in temperature
- Significance Threshold: p < 0.05

Meteorological Influences

Removed effect of any meteorological trends

For example, increasing trend in air temperature may hide improvements resulting from implementation activities

- Applied trend tests to residuals of multivariate nonlinear regressions using meteorological measurements
- Air Temperature was the meteorological variable that most influenced water temperatures.

Temporal Trend

No Statistically Significant Trends were Observed

	Probability of a Trend				
Shasta River Mile	Shasta River Ambient Measurements Mile		Normalized for Meteorological Influence		
	Daily Maximum Water Temperature	MWMT	Daily Maximum Water Temperature		
0.6	0.17	0.07	0.76		
13.1	0.99	0.23	0.71		
15.5	0.64	0.36	0.91		
0. 7	0.54	0.73	0.48		
24.1	0.17	0.12	0.17		
31.9	0.44	0.45	0.08		

Trends are statistically significant if probability value are less than or equal to 0.05

Summary

- Conducted an exploratory analysis of existing data
- Results advised development of a status and trend Monitoring Plan for the watershed
- Assessment identified the clear need to establish and maintain a basin-wide water quality monitoring network
- Monitoring elements in a phased approach
 - Builds in flexibility while maintaining a consistent longterm network in an intermittent funding climate

Contact Information

For more information or to participate on document review team:

Karen Mallory Shasta Valley Resource Conservation District mnkmallory@sbcglobal.net (530) 598-1458

Steve Butkus North Coast Regional Water Quality Control Board sbutkus@waterboards.ca.gov (707) 576-2834